Heteroscedastic factor analysis

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heteroscedastic Factor Mixture Analysis

When data come from an unobserved heterogeneous population, common factor analysis is not appropriate to estimate the underlying constructs of interest. By replacing the traditional assumption of Gaussian distributed factors by a finite mixture of multivariate Gaussians, the unobserved heterogeneity can be modelled by latent classes. In so doing we obtain a particular factor mixture analysis wi...

متن کامل

Review on Heteroscedastic Discriminant Analysis

Discriminant feature spaces are attractive way to improve the word error rate performance of the speech recognition systems. Heteroscedastic discriminant analysis (HDA) is a generalized method for the feature space transformation that does not impose the equa l w i th in c l a s s cova r i ance assumptions required by the standard linear discriminant analysis (LDA). It will be shown that the co...

متن کامل

A Discriminant Analysis Method for Face Recognition in Heteroscedastic Distributions

Linear discriminant analysis (LDA) is a popular method in pattern recognition and is equivalent to Bayesian method when the sample distributions of different classes are obey to the Gaussian with the same covariance matrix. However, in real world, the distribution of data is usually far more complex and the assumption of Gaussian density with the same covariance is seldom to be met which greatl...

متن کامل

Combination of speech features using smoothed heteroscedastic linear discriminant analysis

Feature combination techniques based on PCA, LDA and HLDA are compared in experiments where limited amount of training data is available. Success with feature combination can be quite dependent on proper estimation of statistics required by the used technique. Insufficiency of training data is, therefore, an important problem, which has to be taken in to account in our experiments. Besides of s...

متن کامل

Two-Dimensional Heteroscedastic Discriminant Analysis for Facial Gender Classification

In this paper, a novel discriminant analysis named two-dimensional Heteroscedastic Discriminant Analysis (2DHDA) is presented, and used for gender classification. In 2DHDA, equal within-class covariance constraint is removed. Firstly, the criterion of 2DHDA is defined according to that of 2DLDA. Secondly, the criterion of 2DHDA, log and rearranging terms are taken, and then the optimal projecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrika

سال: 2003

ISSN: 0006-3444,1464-3510

DOI: 10.1093/biomet/90.1.85